Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272100

RESUMO

BACKGROUNDBebtelovimab is a potent, fully human IgG1 monoclonal antibody (mAb) targeting the S-protein of SARS-CoV-2, with broad neutralizing activity to all currently known SARS-CoV-2 variants of concern, including omicron variant lineages. Specialized developmental approaches accelerated the initiation of a clinical trial designed to evaluate the efficacy and safety of bebtelovimab alone (BEB) or together with bamlanivimab (BAM) and etesevimab (ETE) delivered via slow intravenous push for the treatment of mild-to-moderate COVID-19. METHODSThis portion of the phase 2, BLAZE-4 trial (J2X-MC-PYAH; NCT04634409) enrolled 714 patients (between May and July 2021) with mild-to-moderate COVID-19 within 3 days ([≤]3 days) of laboratory diagnosis of SARS-CoV-2 infection. Patients at low risk for severe COVID-19 were randomized 1:1:1 (double-blinded) to placebo, BEB 175 mg, or BEB 175 mg+BAM 700 mg+ETE 1400 mg (BEB+BAM+ETE). Patients at high risk for progression to severe COVID-19 were randomized 2:1 (open-label) to BEB or BEB+BAM+ETE, and a subsequent treatment arm enrolled patients to BEB+BAM+ETE using Centers for Disease Control and Prevention (CDC) updated criteria for High-risk. All treatments were administered intravenously over [≥]30 seconds (open-label BEB) or [≥]6.5 minutes (all other treatment arms). For the placebo-controlled patients (termed Low-risk), the primary endpoint was the proportion of patients with persistently high viral load (PHVL) (log viral load >5.27) on Day 7. For the open-label patients (termed High-risk), the primary endpoint was safety. In nonclinical studies, SARS-CoV-2 isolates were tested using an endpoint neutralization assay to measure BEBs inhibitory concentration greater than 99% (IC99). RESULTSBaseline viral sequencing data were available from 611 patients; 90.2% (n=551) aligned with a variant of interest or concern (WHO designation), with the majority infected with delta (49.8%) or alpha (28.6%) variants. Among the Low-risk patients, PHVL occurred in 19.8% of patients treated with placebo, as compared to 12.7% (p=0.132) of patients treated with BEB+BAM+ETE and 12.0% (p=0.097) of patients treated with BEB, a 36% and 40% relative risk reduction, respectively. Viral load-area under the curve analysis from baseline to Day 11 showed statistically signficant reductions for patients treated with BEB (p=0.006) and BEB+BAM+ETE (p=0.043) compared to patients who received placebo. Time to sustained symptom resolution was reduced by a median of 2 days for patients treated with BEB (6 days; p=0.003) and 1 day for patients treated with BEB+BAM+ETE (7 days; p=0.289) compared to placebo (8 days). The incidence of COVID-19-related hospitalization or all-cause deaths by day 29 were similar across treatment arms, as expected given the patients risk status (the Low risk cohorts had a Low risk of hospitalization, and High risk cohorts received only active therapy without placebo). Overall, safety results were consistent with previous studies investigating mAbs targeting SARS-CoV-2. The proportion of patients with treatment emergent adverse events (AEs) were 9.7% in Low-risk (n=37/380) and 14.7% in High-risk (n=48/326) patients treated with BEB or BEB+BAM+ETE; majority of AEs were considered mild or moderate in severity. Serious AEs were reported in 2.1% of High-risk patients (n=7/326), including one death (a cerebrovascular accident); 1 serious AE was reported among Low-risk patients. In an in vitro neutralization assay, BEB neutralized the omicron isolate (BA.1) with <2.44ng/ml estimated IC99. CONCLUSIONSIn patients with mild-to-moderate COVID-19, treatment with BEB or BEB+BAM+ETE was associated with greater viral clearance, a reduction in time to sustained symptom resolution, and safety results consistent with mAbs that target SARS-CoV-2. Integration of clinical findings with in vitro neutralization of emerging viral variants offered a pragmatic framework for investigating the efficacy of a new antiviral mAb agent, as demonstrated by bebtelovimab.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442182

RESUMO

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In BriefLY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. HighlightsO_LILY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variants C_LIO_LINo loss of potency against currently circulating variants C_LIO_LIBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID database C_LIO_LIBreadth of neutralizing activity and potency supports clinical development C_LI

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-318972

RESUMO

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. One Sentence SummaryLY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...